Two Small Improvements on Ramsey Numbers

Ferdinand Ihringer*

July 4, 2020

Abstract

We give witnesses for $r(5, 22) \ge 492$ and $r(6, 21) \ge 884$.

Previously, we knew $r(5, 22) \ge 485$ and $r(6, 21) \ge 878$, see Table IIa in revision 15 of [1]. Here, we improve this to $r(5, 22) \ge 492$ and $r(6, 21) \ge 884$. This is the result of a primitive computer search which the author conducted with some spare CPU time.

Let Γ be a permutation group acting primitively on $\{1, ..., v\}$. The stabiliser Γ_1 of 1 partitions $\{1, ..., v\} = \{1\} \cup O_1 \cup ... \cup O_\ell$ into some $\ell + 1$ orbits. We can define a vertex-transitive graph G by defining the adjacency of 1 as a subset of $\{O_1, O_2, ..., O_\ell\}$. For small v this process can be automated (e.g. using Magma or GAP which possess primitive group libraries). We used this to look for (K_m, K_n) -free graphs, using GAP's package grape to check for cliques. In this search, we mostly rediscovered existing lower bounds on r(m, n). Here are the two exceptions.

For $r(5, 22) \ge 492$, a witness comes from $\Gamma = C_{491} \rtimes C_{70}$ and the union of two orbits. Maybe the following representation is more convenient: The vertex set is $\{0, \ldots, 490\}$. Two vertices x and y are adjacent if $y = 2^{7w+z} + x \pmod{491}$ for any $w \in \{0, \ldots, 69\}$ and $z \in \{0, 1\}$.

For $r(6, 21) \ge 884$, a witness comes from $\Gamma = C_{883} \rtimes C_{98}$ and the union of two orbits. Again, a more explicit representation: The vertex set is $\{0, \ldots, 883\}$. Two vertices x and y are adjacent if $y = 2^{9w+z} + x \pmod{883}$ for any $w \in \{0, \ldots, 97\}$ and $z \in \{1, 4, 7\}$.

We want to remark that symmetry reducing techniques are essential for checking K_{22} - and K_{21} -freeness in both cases. Using grape's internal function with its symmetry reduction, this took us about 3m and 1h, repectively.

References

 S. P. Radziszowski. Small Ramsey numbers. *Electron. J. Combin.*, 1:Dynamic Survey 1, 30, 1994.

^{*}Department of Mathematics: Analysis, Logic and Discrete Mathematics, Ghent University, Belgium, ferdinand.ihringer@ugent.be.