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Abstract

A partial m-spread of maximals of a polar space is a set of maximal
subspaces which covers each point at most m times. If each point is
covered exactly m times, then a partial m-spread is an m-spread. We
show that m-spreads of maximals do not exist in H(2r − 1, q2) for r
odd for m < q. This extends a result by Vanhove.

1 Introduction

The author visited John Bamberg and Jesse Landsdown at the University of Western
Australia in November/December 2019. This document reports on one project which we
persued, but which lacks substantial enough results to warrant publication.

A partial spread of the Hermitian polar space H(2r − 1, q2) is a set of
maximal isotropic subspaces such that no point of H(2r − 1, q2) is covered
more than once. Vanhove showed that a partial spread of the Hermitian polar
space H(2r − 1, q2), r odd, has size at most qr + 1 [4]. Aguglia, Cossidente,
and Ebert showed that there exist such partial spreads of size qr + 1 [1]. A
partial m-spread is a set of maximal isotropic subspaces such that no point of
H(2r−1, q2) is covered more thanm times. Anm-spread is a partialm-spread
such that each point is covered exactly m times. Write [a]q = (qa−1)/(q−1)
for the number 1-spaces in Fa

q . As H(2r − 1, q2) possesses (q2r−1 + 1)[r]q2
points and each maximal isotropic subspace contains [r]q2 points, we find
that an m-spread has size m(q2r−1 + 1).
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Theorem 1. Let r ≥ 3 be an odd integer. A partial m-spread Y has size at
most

qr + 1 + (m− 1)[2r]q.

Equality occurs only if m < q. In case of equality any two elements of Y are
disjoint or meet in a point. Furthermore, each point lies on either (precisely)
0 or m elements of Y .

For m ≥ q, the trivial bound of m(q2r−1 + 1) is better.

Corollary 2. There exists no m-spread of H(2r − 1, q2) for m < q.

Equality occurs in Theorem 1 if and only if the points covered by the
partial m-spread form a tight set. Hence, by Theorem 12 in [2], we have the
following result.

Corollary 3. If there exists a partial m-spread of size qr + 1 + (m− 1)[2r],
then there exists a strongly regular graph with parameters (q4r, i(q2r−1), i(i−
3) + q2r, i(i− 1)), where i = (qr + 1 + (m− 1)[2r]q)/m = [2r]q + qr+1−[2r]q

m
.

Here i is an integer. Sometimes this improves the bound in Theorem 1
by 1, for instance for (m, q) = (3, 4) we obtain

i =
(22r + 1)(22r+1 + 1)

9
.

This number is an integer if only if r ≡ 1 (mod 3). As we require r odd,
here r ≡ 1 (mod 6).

The strongly regular graphs obtained in this manner are fairly large. The
smallest open case (in terms of partial m-spreads) is (r, q,m) = (3, 3, 2) for
which we obtain parameters (531441, 142688, 38557, 38220).

2 Proof of the Bound

Let Aj denote the distance-j matrix of the dual polar graph associated with
H(2r − 1, q2) and let Vi denote the common eigenspaces auf the Ajs. Then
the eigenvalue of Aj belonging to Vi is, by [5, Theorem 4.3.6],

Pij =

min(r−j,i)∑
h=max(i−j,0)

(−1)i−h q(i−h)(i−h−1)+(j−i+h)2
[

r − i
r − j − h

]
q2

[
i

h

]
q2
. (1)
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Here
[
a
b

]
q

denotes the number of b-spaces in Fa
q .

Let a = (a0, . . . , ar) denote the inner distribution of a partial m-spread
Y with characteristic vector χ, that is ai = |{(A,B) ∈ Y : dim(A ∩ B) =
r− i}|/|Y |. Let Ei be the orthogonal projection matrix onto Vi. The matrix
Ei is positive semidefinite, so χTEiχ ≥ 0. Then χTEiχ ≥ 0 is equivalent to
(for instance, see [5, Theorem 2.2.7])

Pi0

P00

a0 +
Pi1

P01

a1 + · · ·+ Pir

P0r

ar ≥ 0.

We will apply this inequality for i = r. It follows from (1) that for 0 ≤ j < r,
we have

Prj

P0j

= −q Pr,j+1

P0,j+1

. (2)

Furthermore, an m-spread satisfies by definition

[r − 1]q2a1 + [r − 2]q2a2 + · · ·+ [2]q2ar−2 + ar−1 ≤ (m− 1)[r]q2 . (3)

Notice that [n]q2 − [n − 1]q2 = q2n−2 > q for n ≥ 2. Hence, Equation
(2), Equation (3) and r odd ensure that we maximize the sum of the aj if
ar−1 = (m− 1)[r]q2 and aj = 0 for 1 ≤ j < r − 1. Hence, we obtain that

1 + (m− 1)q1−r[r]q2 − q−rar ≥ 0.

Hence, ar ≤ qr + (m− 1)q[r]q2 . Hence,

|Y | ≤ 1 + (m− 1)[r]q2 + qr + (m− 1)q[r]q2 = qr + 1 + (m− 1)[2r]q.

This also shows that equality can only occur when any two distinct elements
of Y or disjoint or intersect in a point.

3 Constructions

We are unaware of any constructions for which Theorem 1 is tight for 1 <
m < q. The first open case is (r, q,m) = (3, 3, 2).

In Theorem 4 of [3], Schmidt constructs a set of size q2r of maximal
isotropic subspaces of H(2r − 1, q2) disjoint to one fixed maximal isotropic
subspace. This set does not cover any point more than q times. Hence, we
obtain a partial q-spread of H(2r− 1, q2) of size q2r + 1. Compare this to the
size of q-spread which is q(q2r−1 + 1) = q2r + q.
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