Partial m-Spreads of Hermitian Polar Spaces

Ferdinand Ihringer*

June 15, 2022

Abstract

A partial *m*-spread of maximals of a polar space is a set of maximal subspaces which covers each point at most *m* times. If each point is covered exactly *m* times, then a partial *m*-spread is an *m*-spread. We show that *m*-spreads of maximals do not exist in $H(2r - 1, q^2)$ for *r* odd for m < q. This extends a result by Vanhove.

1 Introduction

The author visited John Bamberg and Jesse Landsdown at the University of Western Australia in November/December 2019. This document reports on one project which we persued, but which lacks substantial enough results to warrant publication.

A partial spread of the Hermitian polar space $H(2r-1,q^2)$ is a set of maximal isotropic subspaces such that no point of $H(2r-1,q^2)$ is covered more than once. Vanhove showed that a partial spread of the Hermitian polar space $H(2r-1,q^2)$, r odd, has size at most $q^r + 1$ [4]. Aguglia, Cossidente, and Ebert showed that there exist such partial spreads of size $q^r + 1$ [1]. A partial *m*-spread is a set of maximal isotropic subspaces such that no point of $H(2r-1,q^2)$ is covered more than *m* times. An *m*-spread is a partial *m*-spread such that each point is covered exactly *m* times. Write $[a]_q = (q^a - 1)/(q - 1)$ for the number 1-spaces in \mathbb{F}_q^a . As $H(2r-1,q^2)$ possesses $(q^{2r-1}+1)[r]_{q^2}$ points and each maximal isotropic subspace contains $[r]_{q^2}$ points, we find that an *m*-spread has size $m(q^{2r-1} + 1)$.

^{*}Department of Mathematics: Analysis, Logic and Discrete Mathematics, Ghent University, Belgium, ferdinand.ihringer@ugent.be.

Theorem 1. Let $r \ge 3$ be an odd integer. A partial m-spread Y has size at most

$$q^r + 1 + (m-1)[2r]_q.$$

Equality occurs only if m < q. In case of equality any two elements of Y are disjoint or meet in a point. Furthermore, each point lies on either (precisely) 0 or m elements of Y.

For $m \ge q$, the trivial bound of $m(q^{2r-1}+1)$ is better.

Corollary 2. There exists no m-spread of $H(2r - 1, q^2)$ for m < q.

Equality occurs in Theorem 1 if and only if the points covered by the partial m-spread form a tight set. Hence, by Theorem 12 in [2], we have the following result.

Corollary 3. If there exists a partial m-spread of size $q^r + 1 + (m-1)[2r]$, then there exists a strongly regular graph with parameters $(q^{4r}, i(q^{2r}-1), i(i-3) + q^{2r}, i(i-1))$, where $i = (q^r + 1 + (m-1)[2r]_q)/m = [2r]_q + \frac{q^r + 1 - [2r]_q}{m}$.

Here *i* is an integer. Sometimes this improves the bound in Theorem 1 by 1, for instance for (m, q) = (3, 4) we obtain

$$i = \frac{(2^{2r} + 1)(2^{2r+1} + 1)}{9}.$$

This number is an integer if only if $r \equiv 1 \pmod{3}$. As we require r odd, here $r \equiv 1 \pmod{6}$.

The strongly regular graphs obtained in this manner are fairly large. The smallest open case (in terms of partial *m*-spreads) is (r, q, m) = (3, 3, 2) for which we obtain parameters (531441, 142688, 38557, 38220).

2 Proof of the Bound

Let A_j denote the distance-*j* matrix of the dual polar graph associated with $H(2r-1,q^2)$ and let V_i denote the common eigenspaces auf the A_j s. Then the eigenvalue of A_j belonging to V_i is, by [5, Theorem 4.3.6],

$$P_{ij} = \sum_{h=\max(i-j,0)}^{\min(r-j,i)} (-1)^{i-h} q^{(i-h)(i-h-1)+(j-i+h)^2} \begin{bmatrix} r-i\\ r-j-h \end{bmatrix}_{q^2} \begin{bmatrix} i\\ h \end{bmatrix}_{q^2}.$$
 (1)

Here $\begin{bmatrix} a \\ b \end{bmatrix}_q$ denotes the number of *b*-spaces in \mathbb{F}_q^a .

Let $a = (a_0, \ldots, a_r)$ denote the inner distribution of a partial *m*-spread Y with characteristic vector χ , that is $a_i = |\{(A, B) \in Y : \dim(A \cap B) = r - i\}|/|Y|$. Let E_i be the orthogonal projection matrix onto V_i . The matrix E_i is positive semidefinite, so $\chi^T E_i \chi \ge 0$. Then $\chi^T E_i \chi \ge 0$ is equivalent to (for instance, see [5, Theorem 2.2.7])

$$\frac{P_{i0}}{P_{00}}a_0 + \frac{P_{i1}}{P_{01}}a_1 + \dots + \frac{P_{ir}}{P_{0r}}a_r \ge 0.$$

We will apply this inequality for i = r. It follows from (1) that for $0 \le j < r$, we have

$$\frac{P_{rj}}{P_{0j}} = -q \frac{P_{r,j+1}}{P_{0,j+1}}.$$
(2)

Furthermore, an m-spread satisfies by definition

$$[r-1]_{q^2}a_1 + [r-2]_{q^2}a_2 + \dots + [2]_{q^2}a_{r-2} + a_{r-1} \le (m-1)[r]_{q^2}.$$
 (3)

Notice that $[n]_{q^2} - [n-1]_{q^2} = q^{2n-2} > q$ for $n \ge 2$. Hence, Equation (2), Equation (3) and r odd ensure that we maximize the sum of the a_j if $a_{r-1} = (m-1)[r]_{q^2}$ and $a_j = 0$ for $1 \le j < r-1$. Hence, we obtain that

$$1 + (m-1)q^{1-r}[r]_{q^2} - q^{-r}a_r \ge 0$$

Hence, $a_r \leq q^r + (m-1)q[r]_{q^2}$. Hence,

$$|Y| \le 1 + (m-1)[r]_{q^2} + q^r + (m-1)q[r]_{q^2} = q^r + 1 + (m-1)[2r]_q.$$

This also shows that equality can only occur when any two distinct elements of Y or disjoint or intersect in a point.

3 Constructions

We are unaware of any constructions for which Theorem 1 is tight for 1 < m < q. The first open case is (r, q, m) = (3, 3, 2).

In Theorem 4 of [3], Schmidt constructs a set of size q^{2r} of maximal isotropic subspaces of $H(2r-1,q^2)$ disjoint to one fixed maximal isotropic subspace. This set does not cover any point more than q times. Hence, we obtain a partial q-spread of $H(2r-1,q^2)$ of size $q^{2r}+1$. Compare this to the size of q-spread which is $q(q^{2r-1}+1) = q^{2r} + q$.

References

- A. Aguglia, A. Cossidente, and G. L. Ebert, *Complete spans on Hermi*tian varieties, In Proceedings of the Conference on Finite Geometries (Oberwolfach, 2001) **29** (2003) 7–15.
- [2] J. Bamberg, S. Kelly, M. Law, and T. Penttila, *Tight sets and m-ovoids of finite polar spaces*, J. Combin. Theory Ser. A **114** (2007) 1293–1314.
- [3] K.-U. Schmidt, *Hermitian rank distance codes*, Des. Codes Cryptogr. 86 (2018) 1469–1481.
- [4] F. Vanhove, The maximum size of a partial spread in $H(4n + 1, q^2)$ is $q^{2n+1} + 1$, Electron. J. Combin. **16**(1) (2009) 13:6.
- [5] F. Vanhove, Incidence geometry from an algebraic graph theory point of view, PhD thesis, University Of Ghent, 2011.